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We consider a time series of derived sea-ice concentrations as observed about Antarc-

tica by the Nimbus-7 SMMtt satellite in 1983. We quantify the degree of spatial cross-

correlation between these data and seabed topography. Our approach is to implement

a statistical image-processing filter designed to extract local patterns of spatial cross-

correlation over the entire sea-ice field as it undergoes daily changes. Throughout the sea

ice, we find that large-scale variations in sea-ice concentration correlate systematically with

variations in the topography of the seabed. Generally speaking, high concentrations of sea

ice occur over deep ocean, whereas areas of encavement, early dissipation and polynya

formation develop over topographic features of high elevation. We investigate the latter

in detail with respect to the features Maud Rise, Astrid Ridge and the continental shelf

in the Cosmonaut and Ross Seas. In each case, we show that an encavement in sea ice, a

polynya, or both develops in the vicinity of the feature in question. As we quantify these

results in terms of spatial cross-correlation, we infer a potential role for seabed topography

in such fluctuations in the sea ice about Antarctica.
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INTRODUCTION

We investigate the role of seabed topography in variations in sea-ice concentration

as observed about Antarctica. Our analysis covers the entire sea-ice field as it undergoes

daily changes as observed by the Nimbus-7 Scanning Multichannel Microwave Radiometer

(SMMR) satellite in 1983. The aim is to show that features of the large-scale variability

in sea ice correlate systematically with that in seabed topography.

The occurrence of the Maud Rise polynya represents a pronounced example of large-

scale variability in Antarctic sea ice. Indeed, this event entailed the development of a large

area of open water contained within the sea ice in the vicinity of Maud Rise (2°E, 64°S).

Comiso and Gordon [19871 drew the apparent connection between the occurrence of this

hole and the presence of the topographic feature Maud Rise, suggesting a possible link

between seabed topography and variations in sea ice. In fact, based on these qualitative

observations, Gordon and tIuber [19903 implicate topographic features such as a seamount

in a hypothesized sequence of events leading to the occurrence of a polynya. Their conjec-

ture is in part an attempt to account for the unexpected occurrence of polynyas over the

open ocean. Some such linkage may also be at work in the occurrence of the Cosmonaut

polynya as reported by Comiso and Gordon [1987].

In addition to open ocean polynyas, such as the one at Maud Rise and in the Cosmo-

naut Sea, coastal polynyas are also common about Antarctica. They are thought to play a

major role in the building of the sea ice during winter, and in this connection researchers

including gwallg, et al. [19851, Kurtz and Bromwich [19851, and Cavalieri and Martin

[1985] have focused on the importance of katabatic winds in the occurrence and persis-

tence of these polynyas. Nevertheless, characteristics of the seabed may be an important

secondary factor because of the influence the seabed has on ocean currents. In particular,

Pillsbury and Jacobs [1985], Kurtz and Bromwich [1985], and gwatly, et at. [1985] have

each suggested a role for oceanic as well as atmospheric forcing in the life cycle of coastal

polynyas, including the one at Terra Nova Bay, Ross Ice Shelf, as well as other localities

throughout the coast.



Here we aim to demonstrate quantitatively that variations in Antarctic seaice occur

systematically relative to changesin seabedtopography. Our approach is to quantify the

degreeof spatial cross-correlationbetweensea-iceconcentrationsand oceandepth. On the

one hand, we have a time seriesof satellite imagesdepicting three-day averagesof sea-ice

concentrations in 900-km 2 pixels throughout the sea ice. The data were converted from

brightness temperatures, as observed by the Nimbus-7 SMMR satellite, by Corai.,o and

ZwalIg [1989]. On the other hand, we have measurements of the depth of the Antarctic

seabed in 36-km 2 pixels, which we have aggregated to the same spatial scale as the sea-ice

images. These data are part of the Southern Ocean Atlas and were made available to us

through the Lamont-Doherty Geological Observatory at Columbia University. We focus

on the local patterns of spatial cross-correlation between the two sets of measurements.

Our approach is to implement a statistical image-processing filter designed to extract

these patterns over the entire sea-ice field as it undergoes daily changes. The result is

a quantitative summary of the degree of local, linear association between ocean depth

and sea-ice concentration throughout the field. As we produce these summaries of spatial

cross-correlation at every time in the time series, we monitor the derived pattern of linear

association as it evolves over the entire year.

The qualitative observations cited above connect the occurrence of polynyas with

seabed topography and oceanic forcing. As the first quantitative analysis of the role

of seabed topography in sea-ice processes, the present analysis attempts to move these

observations toward a more rigorous understanding of the connections noted therein. Our

results implicate seabed topography as an important determinant of sea-ice processes such

as the occurrence of encavements and polynyas over the open ocean. We discuss their

relevance in specific with regard to the theoretical framework for the occurrence of polynyas

in Gordon and Huber [1990].
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2. DATA AND]VIETttODOLOGY

We describe the data and the methodology used in our analysis of Antarctic sea

ice. Much of our technology is basedon visualization through image analysis, computer

animation, and graphical statistical techniques.Someof thesetools will be introduced as

neededin our results section,but the correlation filter, our principal imageprocessingtool,

is described here in detail.

Data. Two sets of data were used in our analysis: one of sea-ice concentrations and

one of ocean depths. The data on sea-ice concentrations were obtained from the National

Aeronautics and Space Administration's Laboratory for Oceans, Goddard Space Flight

Center in Greenbelt, MD. These data consist of a time series of satellite images depicting

sea-ice concentrations (% ice) over the Antarctic region during 1983. Each image represents

a three-day average of sea-ice concentration taken every other day. so that there is a total

of 178 images in the time series. The sea-ice concentrations were converted by Com, iL_o

and Zwally [1989] from brightness temperatures, emitted from the Earth's surface and

atmosphere, as measured from the Nimbus-7 SMMR satellite along its 18 GHz and 37

GHz channels. The satellite has a scanning footprint of about 30 km x 30 km, so that the

sea-ice images consist of a 293 by 293 array of approximately 900-km z pixels covering the

Antarctic region. For the purpose of our analysis, as a way to estimate missing values and

attenuate the effects of synoptic scale weather events, we implemented a temporal filter

that replaces each image with its running median of 3 in time.

Figure 1 shows a series of images depicting sea-ice concentrations at a number of days

in 1983. The images are depicted in accord with the color key appearing in Exhibit 1. At

top left in Figure 1, we begin with an image in early March when the ice is more-or-less at

full contraction. In the weeks to follow, the sea ice grows through to its maximal winter

extension with the rate of growth being particularly rapid over the Weddell Basin, the

Ross Sea, and in the area east of the Ross Sea to the Antarctic Peninsula. By about

late August [center in Figure 1], the ice assumes its Final extension and shape. To a large

extent, the shape of the boundary or outer edge of the sea ice conforms to that of the

continent, except for the sharp 'corner' that occurs at about 13b°XV, 65°N. It remains to

account for this feature in terms of ocean depth.



In contrast to the areas of rapid growth mentioned above, the sea ice grows relatively

more slowly along the remaining stretches of the Antarctic coast. As is seen in early July

[top right in Figure 1], there is an area of weak growth in the Cosmonaut Sea at about

45°E, 65°S, which is in the vicinity of the Cosmonaut polynya as observed by Comiso and

Gordon [1987]. We focus on this area later in our analysis.

The month of October produces some noticeable variations in sea-ice concentration,

particularly those associated with encavements in the vicinity of Maud Rise and in the

Ross Sea. These encavements are evident in mid November[lower left in Figure 1] and

they manifest as polynyas around mid December [bottom middle in Figure 1]. Thereafter,

as the Austral summer approaches, the sea ice dissipates dramatically. As it does so.

dissipation occurs earliest and proceeds rapidly over Maud Rise and in the Ross Sea. In

contrast, it occurs later and proceeds more slowly in the area stretching eastward from the

Cosmonaut Sea to the Ross Sea, in the Weddell Sea, and in the area west of the Antarctic

Peninsula.

The data on ocean depth are from the Southern Ocean Atlas and were obtained from

the Lamont-Doherty Geological Observatory of Columbia University, Palisades, NY. The

data consist of a single image depicting the topography of the seabed lying beneath the

Southern Ocean. The bathymetric measurements were obtained from a variety of sources,

including sounding from ships, at a much finer spatial resolution than appears in the sea-

ice images. We thus converted these data to an image of the same spatial resolution as the

images of sea ice, yielding a bathymetry image depicting the average depth of the ocean

over a 293 by 293 array of 900-km 2 pixels covering the Antarctic region. There is some

loss of information entailed in this aggregation of measurements, but for our purposes here

the computational advantages in doing so seem to far outweigh the potential loss.

Figure 2 shows the bathymetry image depicting the depth of ocean about Antarctica.

The depths being depicted range approximately between 1 km and 5 km, where the color

key appears in Exhibit 1. Using this image, we urge the reader to locate, for example,

Maud Rise, Kainan Maru Seamount, and the slope of the continental shelf in the Ross Sea.

We will analyze these areas in some detail later.
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Correlation Filter. Recall that our objective is to quantify the influence of seabed

topography on sea-ice behavior. The problem is one of extracting the relevant information

from the time series of sea-ice images, where here we focus on the pattern of local cross-

correlation between sea-ice concentration and ocean depth. Our approach combines the

use of a statistical image-processing filter and computer animation, where our analyses

are performed using an IRIS-4D workstation to execute a combination of user-designed

procedures written in the programming language C, the Princeton Graphics Tools, and

the data-analysis environment of S [see Becket, e* al. [1988]].

The statistical image-processing filter referred to above was designed to determine

the degree of local cross-correlation between sea-ice concentration and ocean depth. Tile

procedure creates a time series of correlation images depicting the spatial pattern of this

correlation throughout the sea ice, where each is determined as follows. Fix a day in the

time series of sea-ice images, and consider the pair of images given by the sea-ice image of

that day and the bathymetry image. The filter maps this pair of images into a third image

depicting the spatial cross-correlation between the two. To do so, we fix a window size for

the filter of 11 x 11 pixels, representing an area of about 109,000 km 2 or 330 km x 3:30

km. This area covers variation in sea ice at the approximate scale of the Maud Rise (about

92,000 km 2) and the Cosmonaut (about 137,700 km 2) polynyas [see Comiso and Gordon

[1987]]. Moreover, as Figure 3 illustrates, there is little evidence of cross-correlation at the

scale of the entire Antarctic region. The scatter plot of sea-ice concentration versus ocean

depth over the entire region yields no evidence of simple structure, necessitating the search

for such structure at smaller scales. The scale chosen here also keeps the computatioaal

burdens to a reasonable level.

Given the window size, the correlation image is then determined as follows. The filter

passes the window simultaneously over the pair of images by moving its center from pixel

to pixel across the entire 293 by 293 array of them. Suppose that the window is centered

at the ijth pixels in the array, where 1 _< i,j <_ 293. Ignoring for the moment pixels near

the boundaries of the image, this determines 121 (i.e. 112 ) pairs of measurements, where

each pair consists of the ocean depth and the sea-ice concentration measured at a given



pixel location contained within the window. The value at the ijth pixel in the correlation

image is then the correlation coefficient determined by these pairs, giving the local cross-

correlation between ice concentration and ocean depth. The procedure is carried-out across

all pixels and the operations repeated throughout the entire year, thus creating a time series

of 178 correlation images depicting the desired patterns of spatial correlation. As pixels

near the boundaries of the sea-ice image do not involve sea-ice, we encode these with an

arbitrary value in the correlation images.

Next we animate the time series of correlation images, as a way to view the variations

in local correlation over the year. While showing the temporal evolution of these patterns,

the animation highlights regions of the sea ice field and periods of its life cycle having

particularly strong linear association with ocean depth. It turns out that the image-

processing filter acts as a feature detector by enhancing interesting, localized patterns of

sea-ice variation requiring further attention. We illustrate this point in the results section.



3. RESULTS

We describe our results by presenting a series of graphical displays illustrating the

structure of the spatial cross-correlation between the sea ice and ocean depth. Our aim

is to highlight interesting features and patterns in these correlations and examine their

temporal evolution.

CORRELATION IMAGES

Recall that our approach is to implement a statistical image-processing filter designed

to highlight local patterns in the spatial cross-correlation. Figure 4 displays the correla-

tion images obtained from the sea-ice images of Figure 1, where the color key appears in

Exhibit 1. The purpose of these images is to highlight patterns of relatively strong linear

association.

To interpret the correlation images, we note that positiv(' correlations indicate the

occurrence of decreasing sea-ice concentration in the presence of topographic features of

decreasing depth or they indicate the converse. The negative correlations indicate the

occurrence of decreasing sea-ice concentration in the presence of topographic features of

increasing depth or they indicate the converse. Finally, zero or negligible correlations,

which we take to include those coefficients inside of the interval [-0.6, 0.6], indicate the

presence of little or no variation in sea ice, topography, or both, or when variations in these

are present, they indicate that a linear relationship is an inadequate summary thereof.

A number of interesting features present themselves. The images highlight the oc-

currence of encavements and polynyas over topographic highs, the presence of edge effects

along the outer edge of the ice shelf and over the continental shelf as well, and finally- the

development and persistence of high concentrations over deep water. The most notable

example of the latter occurs in winter in the Weddell Sea, where we find the occurrence

and persistence of the highest concentrations of sea ice sitting over this deep sea. Sea-ice

concentrations average nearly 100% and the depth averages about 15kin, with there being

little or no variation present in either. As depicted in the winter images of Figure 4, the

spatial cross-correlations in the Weddell region thus fall within the negligible range.
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We next draw attention to the edge effects. As depicted in Figure 4, notice the stretch

of negative correlation along the outer edge of the sea ice, where sea-ice concentrations

typically decrease and the seabed is increasing in depth. In contrast, depth decreases

towards the continental shelf and so does sea-ice concentration, and thus the stretch of

positive correlations near the continent. The latter may in part be due to contamination

of the sea-ice data near the continent as a result of averaging with the lower emissivity of

the land. The former appears to be expected, yet topography may still play a more subtle

role in determining the edge of the ice field. We refer to a possible role in determining the

ultimate growth and hence the final shape of the field as depicted in the middle row of

images in Figure 1. \¥e return to this point in our discussion.

Finally, the correlation images and their animation highlight several features of pos-

itive correlation that are visible in Figure 4. In addition to the interior edge effects men-

tioned above, pronounced features of positive correlation occur in the vicinity of Maud

Rise, in the Ross Sea, and along the Antarctic-Pacific and South Scotia Ridges. In each

case, encavements or regions of the ice field having low sea-ice concentration occur in the

vicinity of topographic highs, where the latter are determined by an orographic feature

in the seabed. As may be seen in Figure 1, the 'shape' of each encavement appears to

mimic the 'shape' of the orographic feature sitting beneath it. In specific, the Antarctic-

Pacific and South-Scotia Ridge encavements manifest the distinctly linear patterns of those

ridges, whereas the Maud-Rise encavement manifests the convex shape that outlines the

topographic contours of Maud Rise, and the shape of the Ross-Sea encavement manifests

that of the continental shelf in the Ross Sea. We thus have a demonstrable coherence

between the occurrence of encavements in sea ice and variations in seabed topography,

which we explore in more detail next.



SEA-ICE CONCENTRATION AND SPATIAL CROSS-CORRELATION

FIELDS IN THE THREE SEAS

Here we examine the temporal evolution of the fields of sea-ice concentration and

spatial cross-correlation in each of the Weddell Sea, the Ross Sea, and the Cosmonaut Sea.

In doing so, we detail the local structure of the spatial cross-correlation between sea-ice

concentration and seabed topography. Our aim is to underscore the observation made

above that the presence of topographic features of high elevation correlates positively with

the occurrence of encavements in sea-ice concentration.

We isolate a rectangular area of study in each of the Weddell, Ross, and Cosmonaut

Seas. Table 1 displays the latitude-longitude pairs at the corners of each area. The

Weddell and Ross Sea study areas are each about 900 x 1200 km rectangles, whereas the

Cosmonaut ' Sea study area is about a 1500 x 1500 km square. The bathymetric contours

depicting seabed topography in each of the study areas appear in Figure 5. Notice, for

example, Maud Rise (2°E, 66°S) in the Weddell Sea, Kainan Maru Seamounts (34°E, 66°S)

in the Cosmonaut Sea, and the slope of the continental shelf in the Ross Sea, We refer

to these and other topographic features below. Finally, we remark that the Weddell Sea

and Cosmonaut Sea study areas were chosen to cover the sites of the 1980 Maud Rise and

Cosmonaut polynyas as observed by Comiso and Gordon [1987] at 2°E, 64°S and 43°E,

66°S, respectively.

Weddell Sea. The principal topographic feature in the Weddell Sea study area is

Maud Rise. The presence of this seamount correlates positively with the occurrence of

an encavement in sea-ice concentration and the eventual development of a polynya. As a

result, Maud Rise localizes the area of earliest and most rapid dissipation of sea ice in the

Weddell Sea.

Figure 6 displays the sea-ice concentration and spatial cross-correlation fields in the

Weddell Sea study area at a selected number of days in 1983. We begin with conditions on

22 July 1983, when after a period of growth in May, June and early July, the ice covers the

study area with essentially 100% sea ice. The exception occurs in the area north of about

60°S, which locates the edge of the ice. These conditions more-or-less persist throughout
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August and into early Septemberas depicted on 4 September 1983. Over this period,

there is only weak spatial cross-correlationpresent throughout the study area with the

exception being the strong positive cross-correlationin the upper-right corner. The latter

seemslargely connectedwith an edge effect whereby decreasingconcentrations of ice at

the edgeof the ice field correlate positively with the rising elevation of the seabedthere.

As seenin Figure 6, this pattern persists throughout the seasonuntil the icemelts, and it

may play a role in the early dissipation of this part the field's edge.

The first sign of notable cross-correlation associated with Maud Rise occurs in mid to

late September. To wit, consider the pattern of spatial cross-correlation on 20 September

1983 as depicted in Figure 6. Notice the 'band' of positive correlation that wraps about

the 'base' of Maud Rise, where the maximum cross-correlations occur to the north of the

seamount and reach magnitudes of about 0.7 to 0.8. Having first appeared in earl)" July,

this pattern involves decreasing sea-ice concentration in the presence of rising elevation

and figures significantly in the development of the Maud-Rise encavement.

The Maud-Rise encavement entails substantial decay in sea-ice concentration in the

vicinity of Maud Rise. The temporal evolution of this event is depicted in the remaining

panels of Figure 6, displaying conditions on October 2 and 26, November 3, 7, 13 and 19,

and December 1, 3, and 7 of 1983. The spatial cross-correlation fields show an expanding

area of strong positive cross-correlation about the seamount. This manifests the decaying

concentrations of sea ice situated over Maud Rise relative to consistently higher concen-

trations situated over the surrounding deep ocean. By about 1 December 1983, sea-ice

concentrations in the encavement area are in the range of 10% to 15% surrounded by

concentrations of 45% and above. According to the operational definition of Zwally, e¢ al.

[1985], these concentrations are low enough to indicate the presence of a polynya. Indeed,

a large hole appears in the ice shelf on 3 December 1983 and localizes an interior area of

the ice field of particularly rapid dissipation.

Cosmonaut Sea. The principal topographic features in the Cosmonaut Sea study area

are the eastern edge of the Astrid Ridge, the Kainan Maru Seamounts, and the continental

shelf lying to the east of the seamounts. The area covers the site of the 1980 Cosmonaut
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polynya at 45°E, 65°S. Apparently, the polynya fails to recur there in 1983,but the site

doeslocalize an areaof weakencavementand of shallow embayment at winter's end. On

the other hand, the presenceof the Astrid Ridge correlatespositively with the occurrence

of an encavementand the developmentof a polynya. For 1983,it thus localizes the area

of early and rapid dissipation of seaice in the CosmonautSea.

Figure 7 displays the sea-iceconcentration and spatial cross-correlationfields in the

CosmonautSeastudy areaat a selectednumber of daysin 1983. We begin with conditions

as they appear on 3 August 1983, which roughly marks the end of the growing season

for the sea ice in the Cosmonaut Sea. The edge of the ice runs along 60°S in the upper-

right corner of the study area. As the tapering sea-ice concentrations there extend over

the deepening waters, an area of strong, negative cross-correlation is generated in the

cross-correlation field. This particular feature persists throughout the winter season.

Next consider conditions on 20 September 1983 and 14 October 1983. We draw

attention to the band of contours of positive cross-correlation running along the coastline

and north along 22.5°E longitude. This separates a field of predominantly negative cross-

correlation to its north and east from that of predominantly positive cross-correlation to

its south and west. Observe that those contours along the coast cohere apparently with

the bathemetric contours of the seabed, having a noticeable 'bulge' in the vicinity of the

Kainan Maru Seamounts and the continental shelf lying east of there. Moreover, on 14

October 1983, there is a distinct area of 5% to 10% encavement in sea-ice concentration

located at about 15°E, 65°S, which locates the Astrid-Ridge feature of highest elevation

and the site of the Astrid-Ridge encavement.

The remaining panels in Figure 7 depict the temporal evolution of the conditions

described above. First consider those depicting conditions on 5, 17, and 19 November

1983. Observe that the split pattern of positive and negative cross-correlation described

above persists at these times. There is, however, no obvious encavement developing at the

historical site of the Cosmonaut polynya, but an embayment appears to develop there later.

In contrast, there is an obvious encavement centered at about 17.5°E, 64°S, representing

the deepening of the Astrid-Ridge encavement mentioned above. As seen on November 23,
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25, and 27 and December3 and 7 of 1983,the deepeningtrend continuesas the Astrid-

Ridgeencavementopensto apolynya and, alongwith the embaymentcited above, localizes

an area of rapid dissipation in the Cosmonaut Sea.

Ro,_s Sea. The principal topographic feature in the Ross Sea study area is the con-

tinental shelf. The waters run about 400 km deep there, being separated from 4,000 km

deep waters in the northeastern part of the study area by the slope of the continental

shelf. A gradient of similar structure manifests in the sea-ice concentration field, where

high concentrations persist over the deep waters while an encavement develops over the

continental shelf. The latter localizes an area of rapid dissipation and the development of

a polynya at winter's end.

Figure 8 displays the sea-ice concentration and spatial cross-correlation fields in the

Ross Sea study area at selected days in 1983. We begin with conditions on 4 March 1983,

when the Ross Sea ice field is in an early stage of growth. As expected during this period

when relatively low concentrations of sea ice push out over the study area. a pattern

of positive and one of negative correlation occurs over the shallow and the deep waters

of the study area, respectively. The cross-correlation contours marking the gradicnt of

separation between the two apparently cohere to those of the continental slope itself. As

the ice continues to grow, this pattern persists and is still present on 24 March 1983, for

example, as depicted in Figure 8.

Next consider conditions on 13 April 1983, when the edge of the ice field extends just

north of 70°S latitude. Otherwise, sea ice covers the study area with concentrations of

about 90% to 95%. First observe the pattern of strong, positive cross-correlation lying in

the southwest between 74°S and 76°S. According to the sea-ice concentration field there,

there is a relative encavement developing over the continental shelf as the first sign of the

Ross-Sea encavement. At the same time, there is another encavement situated over the

'foothills' of the Antarctic-Pacific Ridge, which accounts for the pattern of strong, positive

correlation lying to the northeast above 70°S. Both encavements persist, for example, on

27 April and 11 May of 1983, well within the period when the sea ice completely covers

the study area.
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As part of the cross-correlationpattern describedabove, there are 'linear' patterns

of cross-correlation contours that appear to localizes and mimic similar patterns in the

bathymetric contours of the seabed:onecoherent with thoseof the continental slope, the

other with those of the foothills of the Antarctic-Pacific Ridge. These,of course,separate

the alternating areasof positive and negative cross-correlation described above. As seen

in Figure 8, these conditions prevail on June 6 and 22 and July 6 and 22 of 1983, illus-

trating that they remain stable for several weeks despite the potential for synoptic-scale

weather effects to induce departures from the trend. In August, however, the conditions

described above change. For example, consider conditions on 1,5 August 1983 as depicted

in Figure 8. The spatial cross-correlation field is dominated by positive cross-correlation of

strong magnitude. Throughout the study area, the sea-ice concentration field shows that

sea-ice concentrations of high percentage sit over deep waters while relatively lower per-

centage concentrations sit over the shallows. The latter includes the Ross-Sea encavement

developing over the continental shelf.

This new trend continues through September and early October, when the Austral

spring sets in and magnifies the Ross-Sea encavement. For example, consider the conditions

on 14 October 1983. A substantial encavement in sea-ice concentration occurs in the

vicinity of 185°E, 75°S, where local concentrations of sea ice dip to about 70% or 10c7_ to

20% lower than the surrounding area. This Ross-Sea encavement sits over the shallowest

waters in the study area, producing a peak of positive cross-correlation over the continental

shelf. Then on 19 November 1983, local concentrations of sea ice fall as low as 30e_ in the

vicinity of 180°E, 74°S, and on November 23 and 27 of 1983, a polynya develops as the

sea-ice concentrations there fall below about 15%. Finally, as may be seen on December

1 and 13 of 1983, the Ross Sea ice field then dissipates rapidly with the area of deep

encavement over the continental shelf leading the way.

SEASONAL VARIATION IN CROSS-CORRELATION

IN THE THREE SEAS

The previous section describes the detailed spatial structure of the cross-correlation

of sea ice with topography within our three study areas. The discussion focuses on the

14



development of encavements in sea ice relative to the presence of topographic highs. In

doing so, it treats conditions on a selected number of days drawn largely from the weeks

covering the Austral winter and spring. Here we examine the seasonal variation in these

cross-correlations by treating their temporal evolution over the entire year.

Our approach is to determine time series depicting the seasonal variation in the dis-

tribution of cross-correlation within each of the three study areas. We summarize each of

these distributions using three time series, including a time series of each of the upper and

the lower quartile and the median cross-correlation. The results appear in Figure 9, where

each series depicts a smooth of the data obtained by interpolating a moving average of 3.

The time series for the Maud Rise region appear in the upper panel of Figure 9. The

series illustrates the typical seasonal pattern for regions situated over the open ocean,

being driven by the cycle of growth and dissipation undergone by the sea ice field. The

gap in the time series represents missing values or indeterminant cross-correlations, which

occur in Austral summer when open water covers the study area. The ice begins to grow

over the deep waters of the study area sometime in April, 1983. At the same time, sea-

ice concentrations are relatively low and decrease toward the edge of the ice field, which

accounts for the valley of negative cross-correlations occurring in May and June of 1983.

In the following months, there is an increasing trend in cross-correlation, both in level and

in variability, to its winter and spring peak of positive cross-correlation. This, of course, is

the season of the Maud-Rise encavement described in detail above. Finally, note that the

distribution of cross-correlations remains reasonably symmetric throughout the year.

The Ross Sea time series appear in the middle panel of Figure 9. With the exception of

March and April when the Ross Sea ice field begins growing, the median cross-correlation

is positive in all of 1983. Moreover, the distribution of cross-correlations is one of predom-

inantly positive cross-correlations, particularly in late fall, winter, and early spring. This

is the period when the Ross Sea encavement hovers persistently above the shallow waters

of the continental shelf. At other times, particularly during the summer months of 1983,

the distributions are more variable and contain more negative cross-correlations, reflecting

both the edge effect and the persistence of higher concentrations at some shallow sites.
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Finally, the time seriesfor the CosmonautSeastudy area appear in the lower panelof

Figure 9. From January 1983to early May of 1983,wewitness a period of strong negative

cross-correlation as the developing edge of the ice field extends over the deepening waters in

the study area. In the following months, there is an increasing trend in cross-correlation to

its winter peak, but unlike the other study areas, the median cross-correlation here never

exceeds more than about -0.2. The predominance of negative cross-correlation reflects

the strong edge effect described above. On the other hand, the winter distribution of

cross-correlation appears somewhat skewed to the positive direction as the percentile time

series are positioned asymmetrically about the median series. As discussed in detail above,

the positive extremes in cross-correlation occur in the vicinity of the Astrid Ridge. which

localizes the occurrence of an encavement in the Cosmonaut Sea.
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4. DISCUSSION

The results presented here suggest a role for seabed topography in accounting for large-

scale variations in Antarctic sea ice. They show quantitatively, for example, that the pres-

ence of topographic features of high elevation correlate with the occurrence of encavements

in sea ice. This relationship is particularly evident with respect to the Antarctic-Pacific

Ridge, the Astrid Ridge, Maud Rise, the continental shelf in the Ross and Cosmonaut Seas,

as well as other high-elevation features in the seabed. An exploration of the connection

between these results and those demonstrating a role for oceanographic and atmospheric

effects remains in prospect.

The relationship established here is quantified in terms of the spatial cross-correlation

between sea-ice concentration and ocean depth. In doing so, we implemented a statistical

image-processing filter that selects for features of strong cross-correlation. After processing

a year's worth of data in this way, we animated the results in what proved to be our most

powerful data-analytic technique for information extraction from a time series of satellite

images. The use of color graphics to well represent subranges of sea-ice variation was

integral to our work. Throughout, we found the research of Va_yu_in and Tishchenko

[1989] helpful in developing the color keys used in our image processing routines. Overall.

our techniques will prove valuable in many areas of environmental analysis.

We studied the structure of the spatial cross-correlation field in detail in three study

areas drawn from the V,Teddell Sea, the Cosmonaut Sea, and the Ross Sea. This provided

examples of the relationship described above. In the Weddell Sea study area for instance,

we showed that Maud Rise localized the occurrence of the Maud-Rise encavement, whereas

the continental shelf localized the encavement found in the Ross Sea. In each case, the en-

cavement developed into a polynya and an embayment in the sea ice field near winter's end.

The Astrid Ridge localized a similar event in the Cosmonaut Sea study area, along with

a weaker continental-shelf effect. Peak periods for these strong spatial cross-correlations

occurred over the Austral winter and spring.

We understand our results in terms of the role basal melting plays in the development

of encavements in sea ice. We suspect that, as they encounter topographic features such
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as ridges, seamounts, and the slope of the continental shelf, volumes of warmer water

from deepoceancurrents are directed to the surface,where they melt the ice from below.

Otherwise, we cannot sustain the striking coherencefound here between the topography

of the seabedand the spatial variation observedin the seaice itself. Once an encavement

becomesa polynya or anembayment,of course, other factors such as katabatic winds help

sustain or enlarge the area of open water.

This understanding is consistent with other studies of sea-ice processes in Antarctica.

In specific, Comiso and Gordon [1987] explored the oceanographic conditions at the sites

of the Cosmonaut and Maud-Rise polynyas as observed in 1980. They found temperature

and salinity distributions characteristic of the doming of warmer, saltier deep water. In

the case of Maud Rise, for example, the)" as well as Gordon and Ituber [1990] speculate

that convective upwelling of warmer Weddell deep water may, as part of a sequence of

environmental events, induce a polynya to form by melting the sea ice from below. The

role of the seamount lies in redirecting the circulating deep ocean currents toward the

surface.

In the Ross Sea, Pillsbury and Jacobs [1985] investigated the flow of warm water from

the circumpolar deep water southward across the continental shelf and into the sub-ice shelf

cavity. They found that midwinter intrusions of warm water in July can raise the average

temperature there from -2.19°C to -0.14°C, and they estimated that the ocean supplies

enough heat to melt 150 km a/yr of ice off the base of the Ross Ice Shelf. Their observational

period covers the winter of 1983, leading us to imagine that basal melting contributed to

the Ross-Sea encavement observed here. On the other hand, MacAyeal [1985] investigated

basal melting in a numerical simulation of tidal activity in the Ross Sea. He showed that

periodic tidal currents redirect barotropic circulations along topographic features such as

bumps and ridges in the seabed, thereby channeling the flow of warm water needed to

induce such melting. Thus, the role of the seabed lies again in redirecting the circulating

currents toward the area of encavement.

It remains to investigate the role of seabed topography in determining other properties

of the sea ice. For example, its role in determining rates of growth and dissipation as well
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as the final shape of the ice field needto be better understood. Also, we infer from our

results that someof the first-order or large-scalevariation in sea ice can be modeled in

terms of oceandepth. We thereforepropose to fit sucha model to thesedata and analyze

the remaining fluctuations for both their natural variation and their eovariation with other

environmental processes.
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FIGURE CAPTIONS

Fig. 1. Sea-ice images depicting the Antarctic sea ice field at selected days in 1983. The

color key appears in Exhibit 1. Moving from left to right and top to bottom, the images

depict conditions at days chosen from early March, April, July, mid and late August, early

October, mid November and December, and end of December. At mid December, we see

both the Maud Rise and Ross Sea polynyas.

Fig. 2. Bathymetry image depicting the seabed topography about Antarctica. The color

key appears in Exhibit 1.

Fig. 3. Scatterplot of sea-ice concentration against ocean depth at the scale of the entire

ice field in each of the Austral seasons. The absence of simple linear structure here suggests

the need to search for such structure at smaller spatial scales.

Fig. 4. Cross-correlation images depicting local patterns of spatiN cross-correlation be-

tween sea-ice concentration and ocean depth. The images were derived from those of Figure

1, and the color key appears in Exhibit 1. They quantify a role for seabed topography in

accounting for variations in sea ice. Several examples are treated in the text, including the

features of positive cross-correlation detected in the Ross Sea and near Maud Rise.

Fig. 5. Bathymetric contours depicting the seabed topography in the study area in each

of the Weddell Sea, the Cosmonaut Sea, and the Ross Sea. These areas cover, for example,

the sites of the 1980 Maud Rise and Cosmonaut polynyas as well as the site of the Ross-Sea

encavement observed here.

Fig. 6. Time series of sea-ice concentration and cross-correlation fields in the Weddell Sea

study area at selected days in 1983. They depict, for example, the development of the

Maud-Rise encavement in relation to the topography around Maud Rise.
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Fig. 7. Time series of sea-ice concentration and cross-correlation fields in tile Cosmonaut

Sea study area at selected days in 1983. They depict, for example, the development of an

encavement in relation to the topography along the Astrid Ridge.

Fig. 8. Time series of sea-ice concentration and cross-correlation fields in the Ross Sea

study area at selected days in 1983. They depict, for example, the development of the

Ross-Sea encavement in relation to the topography of the continental shelf in the Ross

Sea.

Fig. 9. Time series depicting the seasonal variation of the spatial cross-correlation between

sea-ice concentration and ocean depth in each of the Weddell Sea, Ross Sea, and Cosmonaut

Sea study areas. In each case, there are three time series giving the median, upper quartile,

and lower quartile drawn from the distribution of cross-correlations within the stud?" area.

Gaps indicate missing values or indeterminate correlations as occurs in the absence of sea

ice.
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EXIIIBITS

Ezhibit 1. Color keys showing the range of data values and corresponding color scale for

the images of Figures 1, 2, and 4.
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Table 1 Longitude-Latitude Pairs

at the Four Corners of the Study Areas

\¥eddell Sea Cosmonaut Sea Ross Sea

18°W, 58°S 12°E, 70°S 218°E, 750S

23°W, 65°S 23°E, 74°S 205°E, 67°S

6°E, 58°S 35°E, 56°S 172°E, 78°S

8°E, 66°S 54°E, 65°S 175°E, 69°S
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Time Series of Local Correlation over Weddell Sea
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